
a6e)!Oecl 
UO!JeW!UV 
~ae-~v 





'--._.../ 

~· 

~ 

SUBLOGIC A2-3D2 EXTENDED GRAPHICS 
ANIMATION PACAKGE 

TECHNICAL MANUAL 
VERSION 1.1 - JUNE 22, 1981 

by 
Bruce Artwick 

Sublo~ic Company 
201 W. Spr1ngfield Avenue 

Champaign, Illinois 61820 U.S.A. 

(217) 359-8482 

First Edition 
First Printing 

~ Sublogic Co. 1981 
'1rll Rights Reserved' 

Printed in USA 

1 

.:::tf-:-0 I 0 3 i.J (e, 





"-----" 

\,______. 

'-------" 

TABLE OF CONTENTS 

1. INTRODUCTION 

1.1. 
1.2 
1.3 
1.4 

General Program Information 
A2-3D2's Relation to A2-3D1 
Program Features 
Getting A2-3D2 Running 

2. HI-RES GRAPHICS CONCEPTS 

2.1 Hi-Res Screen Mapping 
2.2 Hi-Res Coordinate Specification Methods 

2.2.1 3D Effects 
2.2.2 2D Effects 

3. COLOR 

3.1 Color Modes 
3.2 Color Specification Methods 

4. INDEPENDENT OBJECT MANIPULATION 

4.1 Manipulation Concepts 
4.2 Reference Frame Nesting 
4.3 Manipulation Countdown and Recursion 
4.4 Sense of Rotation and Translation 

5 . OTHER IMPROVEMENTS OVER A2-3D1 

5.1 Database Range 
5.2 Speed Improvements 
5.3 Callable Graphic Functions 
5.4 Program Size and Eliminatable Code 
5.5 Skip Command 
5.6 Pause Command 
5.7 3D-to-3D Conversion 

6. CONFIGURATION AND INITIALIZATION 

6.1 Program calling 
6.1.1 Interpretive calls 
6.1.2 XENT1 and ENTRYS calling 
6.1 .3 XENT2 and ENTRYN calling 
6.1.4 NXTPT calling 

6.2 Initializing input buffer starting point 
6.3 Eliminatable code segments 
6.4 Built-in Test Program 
6.5 Increasing Projection Rate 

7. INTERPRETIVE COMMAND SHEETS 

8. DIRECT CALL FUNCTION SHEETS 

9 • MEMORY MAP 

2 





'-------' 

'-------' 

~ 

1 IN1RODUCTION 

1.1 General Program Information 

The A2-3D2 Extended Graphics Animation Package is a high-performance 
upgrade to the A2-3D1 Animation Package. The A2-3D2 ~rogram supports 
all of the functions of the A2-3D1 package and thus ma1ntains database 
compatibility with previously developed databases. 

Four factors prompted the development of this package: 

1. User feedback concerning desired features. 
2. Competitive packages that offered some of these features. 
3. Sublogic's internal need for high-performance drivers. 
4. The low cost of 48K of memory. 

The A2-3D2 package has more features, runs faster, and takes up more 
memory than A2-3D1. 

New features include color lines (140 x 192 resolution), high 
resolution lines (280 x 192 resolution), independent object 
manipulation of as many objects as you like (as opposed to only 16 in 
competitive packages), range improvements (greater-than~32767-length 
lines are now acceptable), reference frame nesting, and the ability 
to call many functions with a simple subroutine call instead of in an 
interpretive mode. A new 3D-to-3D conversion feature allows you to 
generate an array of transformed 3D points in their transformed 3D 
reference frame, and 'Skip' and 'Pause' commands improve display file 
debugging and control. 

1.2 A2-3D2's Relation to A2-3D1 

You must own and be familiar with the A2-3D1 package to use the A2-3D2 
upgrade. The concepts of 3-D databases, viewer location and rotation, 
and display file creation and interpretation are all described in the 
A2-3D1 technical manual. 

This manual describes the extensions to the A2-3D1 package and 
explains new concepts needed to use them. 

All old A2-3D1 commands remain the same, so old databases may be used 
with A2-3D2*. The call addresses remain the same. 

Only the trig function variable address and 
calling addresses have changed. If you rely on 
or multiply/divide patch-points, you must update 
your programs. 

multiply and divide 
called trig functions 
the call addresses in 

A2-3D2 is too large to fit in low memory (800 to 1fff hex). Only the 
high memory version (starting at 6000 hex) is available. 

* NOTE: As long as the end-of-file mark is not a new command code. See 
the EOF command sheet (79 hex, 121 decimal) for details. 

3 



1.3 Program Features 

The following chart presents the features of the A2-3D2 package and 
the corresponding A2-3D1 features where applicable. 

FUNCTION 

INTERPRETIVE FUNCTIONS: 

Pure Point (140 x 192) 
Start Point (140 x 192) 
Continue Point (140 x 192) 
Ray Point (140 x 192) 
Clipper Control 
Viewer Position D.P.,Pseudodegrees 
Draw 2D Line on Screen 
Display Screen Select 
Erase Screen/ Fill Screen 
Write Screen Select 
Plot a 2D White Point 
Inter~retive Jump 
Set L1ne Drawing Mode 
Turn on Output Array 
Screen Size Select 
Field of View Select 
Easy Initialize 
No Operation 
Set Color Mode 
Independent Object Call 
Set Resolution 
Hi-Res (280x192) Line 2D 
Set Hi-Res Bias 

2D 
2D 

A2-3D1 

O,x,y,z 
1,x,y,z 
2,x,y,z 
3,x,y,z 
4,on7off 
S,x,y,z,p,b,h 
6,x,y,x' ,y' 
7,code 
8,code 
9,code 

10,x,y 
11,adrlsb,adrmsb 
12,mode 
13,adrlsb,adrmsb 
14,w,h,cx,cy 
15,axr,ayr,azr 
16 
17 

Hi-Res (x=256 Limited) Line 
Hi-Res (280x192) Point Plot 
Hi-Res (x=256 Limited) Pnt. 
Skip segment 

Plot 2D -

Pause for n/Sths of a Second 
Set 3D to 3D Array Gen. Address 
Set 3D to 3D Array Gen. Status 
End of File 

CALLABLE FUNCTIONS 

Sin/Cosine calls 
Multiply (SP and DP) 
Divide (DP) 
Erase (hi/low page) 
Hi-Res Point Plot 
Color Point Plot 
Hi-Res Line Draw 
Color Line Draw 
Set Display Resolution 

GENERAL FEATURES 

Initialize Input Buffer Ptr. 
Line Length Limit 
World Movement 

undefined 

yes 

32767 max. 
limited by 
overflow 

A2-3D2 

O,x,y,z 
1,x,y,z 
2,x,y,z 
3,x,y,z 
4 ,on7off 
S,x,y,z,p,b,h 
6,x,y,x' ,y' 
?,code 
8,code 
9,code 

10,x,y 
11,adrlsb,adrmsb 
12,mode 
13,adrlsb,adrmsb 
14,w,h,cx,cy 
15,axr,ayr,azr 
16 
17 
18,col 
19,stat,loc,addr 
20, res 
21,xl,xh,y,xl,xh,y 
22,xl,xh,y 
23 1 X 1 y 1 X ' , y' 
24,xl,xh,y 
25,x,y 
26,size,status 
27,time 
28,adrlsb,adrmsb 
29,status 
121 (79 hex) 

yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 

yes 
113508 max.* 
unlimited ** 

* Distance from -32767,-32767,-32767 to 32767,32767,32767. ** As long as the value -32768 is avoided in databases and eye position. 

4 

"---./ 

'--------' 

'--.___/ 



"-------' 

"---

'"----" 

1.4 GETTING A2-3D2 RUNNING 

A2-3D2's program size and variables' locations are shown in the memory 
map that accompanies the package. A good starting point in getting 
familiar with the package is the built-in test program. See section 
6.4 for details. The test program will assure you that the interpreter 
is properly installed in memory and performing its functions. 

Instructions for installing A2-3D2 are supplied on the disk or with 
the cassette. You will need your old A2-3Dl program to generate the 
A2~3D2 enhancement. 

5 



2 HI-RES GRAPHICS CONCEPTS 

The hi-res screen's 280 x 192 non-color mode becomes useful in 
applications where fine detail is important. This can cause smeared, 
random colors if displayed on a color monitor. Good display results 
can be obtained by using a black and white monitor or color monitor in 
black and white mode. 

This section describes the 280 x 192 line drawing feature. 

2.1 Hi-Res Screen Mapping 

The 280 x 192 mapping follows the Sublogic convention of putting x,y 
coordinate 0,0 at the screen's center: 

x=-140 dec. 
x=FF74 hex. 

=95 dec. 
~=SF hex.~ 

x,y=O,O 

y=-96 dec. 
y=AO hex. 

x=139 dec. 
x=008b hex. 

Note that 2-bytes are required to represent the X range because 
-140 to 139 range exceeds 1-byte's -128 to 127 range by 24 units. 

2.2 Hi-Res Coordinate Specification Methods 

2.2.1 3D Effects 

the 

When working in 3D coordinates, you are not concerned with the 2D 
screen because the 3D to 2D converter performs the mapping. The 3D 
coordinate representations thus are unaffected. 

Line drawing mode can be switched from 140 x 192 color to 280 x 192 
hi-res using the 14 (hex) 'Set Resolution' command (see command 
sheets). When hi-res is selected before 3D lines in the display file, 
the 3D lines are projected and drawn in the same way they would have 
been in color mode but with 280 x 192 resolution. In other words, the 
screen image looks the same (same size and shape) but now consists of 
very fine, accurate, non-colored lines. 

2.2.2 2D Effects 

The old 'Draw a 2D Line on Screen' and 'Plot a 2D Point'commands, when 
preceded by a 'Set Resolution' (to high resolution) command, draw 
lines and plot points in the same way they would have in color mode 
but with 280 x 192 resolution. Again, the screen image looks the same 
(same size and shape) but now consists of very fine, accurate, 
non-colored lines. Note that the conversion to high-res is performed 
by the A2-3D2 driver by simply multiplying the user-specified 
coordinates by two. This works well, but all lines start and end on 
even X boundaries thus not fully utilizing the high resolution of the 

6 

\._../ 

'-..__./ 

'-..__./ 



~ 

~ 

"----./ 

screen. 

Two new line specification methods (and corresponding commands for 
points) are available to make full use of the 280 X-resolution: 

METHOD 1. Lines and points can be specified by submitting an X with 
-140 to +139 decimal range (this takes two bytes) and a Y with -96 to 
+95 range. The 'High Res (280 x 192) Point 2D' command is an example 
of this method. The format is: opcode, X lsb, X msb, Y. The X is 
submitted LSB-first in typical 6502 form. Although this method fully 
specifies lines and points, it is memory and computationally wasteful 
because double precision X storage and calculations are used. For 
more efficiency, method 2 may be used. 

METHOD 2. X is treated as a -128 to +127 range field resulting in an 
X-resolution of 256 units. Twentr-four of the 280 X units are not 
used. This method allows points and ines to be submitted in single 
precision in the general form: opcode, X, Y. The position of the 256 
possible X locations on the 280-wide screen is user selectable. The 
Set Hi-Res Bias command allows you to match the center of the 256 x 
192 plotting window to any location on the 280 x 192 screen. You may 
choose to put the unused 24 pixels to the right or left side of the 
screen, or to split them in some way between right and left. By 
default, the 24 unused pixels are split as 12 left and 12 right. 

Method 1 and 2 are independent of the selected screen resolution (280 
x 192 or 140 x 192 color) and always draw hi-res lines. This is in 
contrast to the old 'Draw a 2D Line on Screen' command that draws 
color or high-res lines depending on selected screen resolution. 

7 



3 COLOR 

When the original A2-3D1 package was written (in early 1979), the 
APPLE II had only 3 hi-res colors: green, purple, and white. With the 
introducion of the APPLE II Plus, 5-colors became available and more 
and more people began insisting on 140 x 192 color for their 
applications. The line drawers in the A2-3D2 driver thus were modified 
to generate color. 

3.1 Color Modes 

All 5-colors now can be drawn by A2-3D2 in 140 x 192 color mode. The 
choice of colors are: blue, purple, green, orange, and white. Keep in 
mind, however, that the APPLE II limits color mixin~. There are 
actually two color sets or 'palettes' as they are somet1mes called. 
You may chose between the green-purple-white palette, and the 
orange-blue-white palette. The palettes are selectable on a 
screen-byte basis. Therefore, every 4 (approximately) color pixels 
that are next to each other on a single line must all be of the same 
palette. 

This can cause problems (if nice-looking colors are what you are 
after). For example, an orange line can be drawn horizontally across 
the screen. A diagonal purple line can then cross it. Because the 
palette at the intersection can not match orange and pur~le 
simultaneously (they are on different palettes), you end up w1th 
either a blue dot at the intersection (if you use the orange-blue
white palette), or about 4-horizontal pixels of green (if the green
purple-white palette is chosen). 

As more lines of different palettes intersect, things get worse and 
worse. With the orange and purple line intersection above it is easy 
to see that the blue dot at the intersection is preferable to the big 
green 4-pixel blotch, but when 4-lines go through a single palette 
byte, what looks best is more difficult to determine (and can indeed 
be a matter of viewer preference). 

The A2-3D2 driver makes no attempt to determine what looks best. 
Instead, it sets the palette to that of the latest color line that 
goes through the byte. Keep this in mind if you are using intersecting 
color lines extensively. The order in which you submit the lines will 
make a palette selection difference at intersections so you may want 
to switch the line submittal order to get a desired effect. 

3.2 Color Specification Methods 

The 'Set Color Mode' command (see command sheets) sets the driver to 
generate the desired color. All 3D lines and all 2D non-high-res lines 
that follow the 'Set Color Mode ' command will be drawn in the desired 
color. 

The 'Set Color Mode' command has no meaning when high-res (280 x 192) 
is selected by the 'Set Resolution' command, A 'Set Color Mode' 
command submitted while in hi-res mode will set the color line drawers 
to generate the specified color, but the hi-res line drawer is used to 
generate the hi-res line. Note that when you switch back to color 
mode, the color line drawer is ready to generate the color you last 
specified (even if it was specified within the hi-res drawing part of 
a display file). 

8 

\______/. 

~ 

~ 



'------' 

'-.___./ 

'------' 

4 INDEPENDENT OBJECT MANIPULATION 

4.1 Manipulation Concepts 

In some applications, individually movable and rotatable objects are 
desirable. The A2-3D2 package is able to manipulate as many such 
objects as desired. 

It is first necessary to define an object. Simply build-up the object 
in its own coordinate system with 0,0,0 assumed to be the center of 
rotation. Once complete, put an EOF (end of file) at the end of it. 
This is now the object definition. 

The object may now be projected by putting an 'Independent Object 
Call' (see commmand sheets) in your normal displar file. This call 
specifies the address of the independent object def1nition and the 
current position and rotation of the object in space. The current 
position and rotation allows you to move an object around in space and 
to rotate it around its own axes. In formal graphics terms, 3D 
instancing is performed. 

The independent object call is a very powerful feature because you can 
use a common independent object definition to represent many objects 
in space. An independent definition of a space ship, for example, may 
be called several times using multiple independent object calls- once 
for each ship in a whole fleet of space ships. Each space ship can 
navigate its own way around by simply modifying the positional and 
rotational information in the independent object calls. 

See the command sheets for the interpretive 'Independent Object Call'. 

9 



4.2 Reference Frame Nesting 

Independently manipulatable objects open a new world of dynamic object 
movement in space. With A2-3Dl you had to be content with viewing 
'what was out there'. Users informed us that the competition's package 
allowed you to 'move things around'. A2-3D2 now allows you to do this 
also, but we have taken manipulation even one step further using the 
concept of nested reference frames. Nested reference frames can best 
be introduced with an example: · 

Assume that for an engineering demonstration you want to show the 
effects of road vibration loosening the valve cover on an automobile's 
tire (yes, it does sound absurd). You need to show the car moving 
around. You need to show the spinning tires on the car. Finally, you 
need to show the valve cover spinning loose. Doing this with A2-3Dl 
or any of the competitions' packages is horrendously difficult if not 
impossible. With A2-3D2 it is easy. 

Simply define the car body as an independent object. Within the car 
body definition, insert an independent object call to the tire 
(another independent object). Because this independent object call is 
in the car body definition, it is in the car body's reference frame 
and mov~s as the car does. 

Similarly, put an 'Independent Object Call' to the valve cover within 
the tire's definition. Now the valve is in the tire's reference frame, 
rotates with the tire, and moves along as the car moves. You may 
increase the heading angle of the valve cover to make it spin and 
increase its Y position to make it pop off (if you want to show that 
the cover does indeed vibrate loose). 

This is a very powerful feature. The number of reference frames 'deep' 
you may nest is limited by stack size. Each level requires about 30 
(decimal)-bytes of stack space. Assuming that the regular 3D portion 
of the driver requires about 40 (decimal) bytes, this allows for about 
7-levels. · 

10 

\____../ 

~ 

"--.../' 



·~ 

'------" 

'------" 

4.3 Manipulation Countdown and Recursion 

Notice that there is a status flag in the ' Independent Object Call'. 
This can be used in two ways. When set to 00, the independent object 
will not be processed. Any nes t ed objects within the 'turned off' 
independent object will, of course, also be turned off. You can 
therefore use the status byte as a convenient switch to turn 
independent objects on and off. 

The status value ff (hex) turns an object on and leaves it on. A value 
less than ff is called a countdown value. Every time the object is 
called it is decremented by one until it reaches zero, at wh1ch time 
the object is turned off . 

This feature can be used to simplify action and game-type programming. 
A 'photon-torpedo' for example can have its status byte set to the 
value 14. After 14 frames, the photon torpedo will turn itself off. 

RECURSION - Independently manipulated objects can be nested. They can 
call other independent objects and put them in their own reference 
frames. Using the status flag properly, independently manipulated 
objects can call themselves recursively. 

If an object is simply turned on all the time (status= ff), recursion 
is impossible because the object keeps nesting into itself 
indefinitely (actually unt i l the stack blows-up). But by setting the 
status flag to the desired number of levels of recursion, the element 
can turn itself off after a given number of levels, thereby bypassing 
itself and running into its EOF thereby causing un-nesting. 

Recursion may be useful when you need to put one object in an 
identical object's reference frame but want to avoid redundant 
definitions. A planetary gear system is a good example. Two identical 
gears may be required , but the planet gear must be put into the sun 
gear's reference frame. Two identical definitions could be setup (one 
for the sun, and one for the planet gear) and the sun gear definition 
could call the planet gear definition. To avoid the wastefulness of a 
redundant and probably complex gear definition, recursion could be 
used. 

There are even more recursive tricks you can play with the countdown 
value. You can call many independent objects recursively within the 
definition , and each one can have a different countdown value. When 
one recursive nesting is done , it will internally start nesting the 
next. Thinking on this level gets ~uite confusing and if you come up 
with a good method of visualiz1ng and notating this, please let us 
know. 

11 



4.4 Sense of Rotation and Translation 

Independent objects' rotations and translations correspond direct~y 
with the viewer's sense of rotation and translation. Figure 14 in the 
A2-3D1 technical manual shows the change in view while lookin~ out 
into space. Independent objects are translated and rotated as 1f you 
were inside their reference frame looking out into space. 

If you are looking straight ahead with no pitch, bank or heading and 
an object (an aircraft for example) is in front of you and flying away 
from you, the following will happen as you manipulate the airplane's 
independent object call parameters. 

+X MOVEMENT - Airplane moves to right on your screen. 

+Y MOVEMENT - Airplane moves up on your screen. 

+Z MOVEMENT - Airplane moves away on your screen. 

+ HEADING - Airplane turns more to the right. 

+ PITCH - Airplane drops its nose. 

+BANK - Airplane banks to left (as it moves away from you) 

Note that the order of translation is: 

1. X,Y,Z movement (object is first placed to its location 
in space.) 

2. Heading. The object spins around parallel to the x-z plane. 

3. Pitch. The object then pitches up or down, perpendicular 
to the direct1on (heading) it is pointed at. 

4. Bank. The object rolls about the axis that has just been 
'headed' and 'pitched'. 

Remember that the rotations and translations correspond to normal 
'EYE' rotations (Figure 14. in tech. manual). It is also important to 
note that this correspondence applies to a viewer looking out of the 
independent object's reference frame, not into it. The sense of 
movement and rotation will seem reversed if you think of the rotations 
and translations from the outside-in. 

Movement in the X direction is a good example of reverse sense of 
translation. If you look at the airplane in front of you and then you 
move in the +X direction, the airplane will move to the left on the 
screen. If the airplane moves in the +X direction it will move to the 
right on the screen. In both cases X was increased, but the object 
moved to the left in one case and right in the other. But if you 
consider what would be seen out the window of the other airplane when 
he moves in a +X direction, objects in front of him would tend to move 
to the left of his viewing window. 

12 

'-.__.../ 

~ 

\....__/ 



'-........--

'-........--

'------" 

5 OTHER IMPROVEMENTS OVER A2-3D1 

Many small improvements that don't affect database structure or 
programming are incorporated in A2-3D2. They are outlined below: 

5.1 Database Range 

A2-3D1 had a number of database range limitations. Lines were limited 
to lengths less than 32767, and you had to make your database small 
enough so that you didn't 'fall off the edge of the world' {see 
Setting Up 3D Scenes in the A2-3D1 technical manual). These 
limitations now are removed. A 'spherical compression' method {first 
used on Sublogic's Z80 3D J?ackage) is incorporated to eliminate 
overflow and project close-in l1nes more accurately. 

The only overflow that can still cause problems is that caused by 
database elements or viewer positions containin~ the value -32768. 
There is no positive equivalent to this value 1n 16-bit integer 
arithmetic so a sign error results in computations using it. Checking 
for this value and taking appropriate program action was considered, 
but we determined it was not worth slowing the display for. Simply 
avoiding this value in databases and viewer location is the preferred 
option. 

Overflow also is a problem if offsets within nested reference frames 
accumulate to a value of greater than 65535 in any direction. 

5.2 Speed Improvements 

A2-3D2 has faster line generators than A2-3D1. A number of subroutines 
were replaced by inline code segments, and line overhead was reduced 
by converting generation tables to screen center coordinates {thus 
avoiding conversion of in-coming variables to corner-origin 
coordinates). A bit of speed was lost with the introduction of the 
spherical compressor, but 3D-line generation is still faster than 
A2-3D1, and 2-D line generation is faster than ever. 

The erase command is a bit quicker than before. Separate erase 
routines for both screen pages make program se l f-modification {which 
used to take place prior to the era se) unnecesary. 

5.3 Callable Graphic Functions 

A2-3D1 had only one callable function {the TRIG) function. An appendix 
section later was added concerning multiplier and divider patch 
points. These directly callable routines proved to be quite popular, 
so A2-3D2 contains more of these functions. Direct-call functions now 
include 'raphic primitives such as erase, point plot, and line draw. 
See the Direct Call Function Sheets' for details. 

NOTE: Before usin~ direct call functions, read the caution note at the 
beginning of sect1on 8. 

5.4 Program Size and Eliminatable Code 

A2-3D1 was about 4600 bytes long. Small program size was a prime 
concern because most users had only 16K of memory. A2-3D2 was not 

13 

.... 



optimized for size because memory costs have dropped dramatically (a 
user can now upgrade from 16K to 48K for about forty dollars). A2-3.D2 
is about 7900 bytes long. Memory space was traded-off for improved 
performance and features. 

Although 7900 bytes doesn't constitute a huge program, it does have 
some consequences. The low memory version is no longer available (only 
6144 bytes are available between 800h and 1FFFh). 

Certain code segments may be eliminated from the high and 16w ends of 
the program if certain features are not used. Other segments that fall 
within the program may also be eliminated if not used, thereby leaving 
a usable memory 'hole' in the middle of the program. The segments 
appear below in memory address order. Note that if you want to free 
all the memory up to the routine you want, you must not use any of the 
functions whose code you eliminated. 

Segment Name Function Condition to Eliminate 

XENT1: 
XENT2: 
XSIN: 
XCOS: 
ZPSAV: 
ENTRYS: 
ENTRYN: 
COL2DT: 

SINEX: 
ROWTBH: 

Entry vector 1 
Entry vector 2 
Sine computation 
Cosine computation 
Zero page save memory area 
Page restoring program entry 
Normal semi-restoring entry 
Color set code to array xfer 

Callable sine/cos processing 
APPLE screen drawing 

Use ENTRYS entry point instead. 
Use ENTRYN entry point instead. 
Use SINEX entry point instead. 
Use COSEX entry point instead. 
Don't use ENTRYS entry point 
Don't use ENTRYS entry point 
Don't use ENTRYN entry point 
Don't use command 12 hex or 14 hex 
when in array generation mode. 
Don't use external sine/cos calls 
Use output array only and no 
APPLE draw, erase, or any other 
screen functions. 

NOTE: See memory map for addresses. 

5.5 Skip Command 

Turning elements off and eliminating them from the database used to be 
a matter of filling-in an area with NOPs or using a position-dependent 
interpretive jump. The Skip command now allows you to jump over 
sections of display files. 

The skip command has both length and status arguments. The length 
tells how many bytes to skip-over (in addition to the skip command 
itself), and the status byte tells whether the skip should be 
performed. 

By putting 
elements), 
byte to ff 
The sense 
the 'Skip' 

a skip command before an element (or a whole secion of 
the element can be turned on or off by setting the status 

(hex) to turn it on (no skip), or 00 to turn it off (skip). 
(00 or ff hex) of the status byte may seem backwards. See 

command sheet for details. 

5.6 Pause Command 

In many situations it is desirable to pause in the middle of a display 
file. A series of display frames with pauses between them, for 
example, makes a good A2-3D2 function test program. This is in fact 
how we test the A2-3D2 package. 

The pause command is timed to allow you to pause from 0 to 255 fifths 
of a second. 

5.7 3D to 3D Conversion 

14 

----

"-../ 

"---/ 



"-....../ 

"-----" 

"-....../ 

Many users need to know the position of a point in space after the 3D 
translation and rotation. Nested reference frames make this feature 
even more imperative. It is now possible to generate an output array 
of the points and lines after 3D translation and rotation (prior to 
clipping and projection). 

The SET323 and GN323 commands allow you to set an array address and 
start generating an array of transformed 3D points. The 3D to 2D 
conversion and final projection can be suppressed (a GN323 command 
option) if no screen projection is desired. 

Note that this array consists of points that are rotated into the 
eye's coordinate system and not points in absolute 3D space. All 
points, including those coming out of nested reference frames are in 
the eye's reference frame when dumped into this array. They can be 
used in relation to each other for functions such as 'h1t detection' 
in games, but don't confuse these coordinates with absolute 
coordinates when performin~ such functions. If you want to compare a 
tank's projectile position w1th a target's position, you must rotate 
the target into the eye's coordinate system. Alternatively, you can 
generate the array with x,y,z, pitch, bank and heading all · equal to 
zero ·(in this case, the eye and absolute reference frames are the 
same). 

3D to 3D ARRAY FORMAT -

The transformed 3D points are put into the array pointed-at by 
ARR323+1 and ARR323+2 (lsb,msb) in the following sequence. 

word 
0 
1 
2 
3 
4 
5 
6 
7 

data 
x lsb 
x msb 
y lsb 
y msb 
z lsb 
z msb 
x lsb 
x msb 

meaning 
transformed value of 1st point encountered 

transformed value of 2nd point encountered 

There are no opcodes to indicate where the points came from 
(start, continue, ray, or pure point). The user must manually keep 
track of what these points mean. 

The end of the generated array may be found by observing the value of 
ARR323+1 and ARR323+2 (the lsb and msb of the array pointer). This 
~ointer always points to the array append point where the next point 
1s to be added. 

CAUTION: It is important to note the limitations of this feature 
before usin$ it. The A2-3D2 package has internal scaling routines 
that allow w1de database and movement ranges. Eye location added to 
object location often exceeds the 65535 unit range of 16-bit integer 
ar1thmetic. When any sort of overflow occurs, the A2-3D2 routines 
perform nonstandard matrix rotation operations that bypass the normal 
3D-to-3D conversion process. The desired 3D to 3D array can not be 
computed under these conditions. 

Putting the program into 3D-to-3D array generation mode turns off the 
overflow bypass system to maintain correct results in the array. Note 
that you are restricted to world overflow limits as in A2-3Dl when you 
are generating the array. 

This limitation only applies when 3D-to-3D array generation is turned 
on. You can still have free movement through a large database (a 
battlefield for example) with the array turned off while computing a 
relatively close-in object's position {a tank's projectile perhaps). 

15 



6 CONFIGURATION AND INITIALIZATION 

6.1 Program Calling 

There are many ways to call A2-3D2. It may be called three 
interpretive mode, and individual functions may be 
themselves. In all cases, certain parameters must be 
(manually or automatically). 

6.1.1. Interpretive Calls 

ways in its 
called by 

initialized 

There are three interpretive entry points. They provide a trade off of 
speed and ease of use. All three are easy to use, but you must go 
through more manual initialization and keep track of variables outside 
the A2-3D2 package if the fast entry points are used. The following 
heirarchy chart illustrates the three points: 

Use a JSR to access these entry points. 

XENT1: or ENTRYS: 
1. saves %psw,%a,%x,%y 
2. saves memory 60h to C2h 
3. calls ENTRYN 

XENT2 : or ENTRYN: 
1. clears decimal mode 
2. clears variables CLIPON to IBP 
3. initializes IBP 
4. initializes rotation matrix to 'head-on view' 
5. initializes screen bias and current screen select 
6. falls to NXTPT 

NXTPT: 
1. interprets instructions until end of file 
2. returns (to ENTRYS call or user call) 

4. restores memory 60h to C2h 
5. restores %y,%x,%a,%psw 
6. returns in its identical calling state 

NOTE: See memory map for addreses of entry points 

Time may be saved by calling ENTRYN or NXTPT, but the proper 
initializations performed by the higher level functions must be done 
first. You may not even need to perform certain functions (XENT1 steps 
2 and 4 for example) if you manually keep track of old variables and 
how they are modified by the program. 

6.1.2. XENT1 and ENTRYS calling 

XENT1 and ENTRYS are the easiest to use calls. They perform all 
necessary initialization and save zero page memory. The XENT1 calling 
point is located in the jump vector section of the ~rogram and simply 
jumps to ENTRYS. Time and memory may be saved by us1ng ENTRYS instead. 

If you use this entry point, things will be simple, but the program 
will run slowly, especially if a small database is used (as the 
initialization is in the program's overhead). 

6.1.3. XENT2 and ENTRYN calling 

This entry point initializes the variables to the states necessary to 
interpret the display file in accordance with the A2-3D1 definition. 
For example, unless otherwise stated with the EYE command, the viewing 

16 

"----./ 

~ 

"----./ 



"----./ 

'------' 

"----" 

angle is straight foreward. The ENTRYN routine initializes the matrix 
to straight foreward on each entry. 

If rou don't want automatic zero page variable saving and register 
sav1ng, it is wise to use this entry point as it speeds things up. 
Note that variables 60-C2 may be destroyed by the program. There is no 
need to manually initialize any variables - Just realize that these 
locations get destroyed if this entry point 1s used. 

XENT2 is simply a jump from the jump vector section to the ENTRYN 
entry point. You can save time and memory by using the ENTRYN entry 
point instead. 

6.1.4. NXTPT calling 

This is the lowest level on which the interpreter may be called. It 
jumps right into the interpreter loop without initializing any 
variables. It is the fastest entry point. 

You must manually initialize these variables or make sure that the 
variables are still good from the last pass through the program. The 
following must be initialized: 

CLIPON: 
GENAR: 
M1: to M9: 

XV: 
YV: 
ZV: 
ADDRS: 
SCBIAS: 
SCRLOW: 
SCRHI: 
IBP: 

O=clipper on not O=clipper off 
O=draw screen not O=make array 
valid xform matrix, or a call to matrix generator 
(manually or using EYE) before any projections are 
performed. 

viewer's x location (or call EYE) 
viewer's y location 
viewer's z location 
this byte must be 00 
set to 00/20 hex for lo/hi screen pages 
Lowest screen address. 20/40 hex for lo/hi pages 
High screen address. 40/60 hex for lo/hi pages 
Input buffer pointer. See section 6.2. 

Low page variables from 60 to C2 may also be destroyed by this call 
and ~hould be saved if desired. 

6.2 Initializing input buffer starting point 

The display file for A2-3D2 should start at address TDAT (see memory 
map). You al~o have the option to set the start address manually. 

The IBP (input buffer pointer) is a parameter in the zero 
keeps track of where the interpreter is interpreting. It is 
a computer's program counter. It is a 16-bit value (least 
first) at IBP:. 

page that 
similar to 
sig. byte 

The ENTRYN routine initializes the IBP to the address TDAT:. The two 
load-immediate instructions at IBPSET: and IBPS2: load IBP+1 and IBP 
respectively. 

If you enter via XENT1, ENTRYS, XENT2, or ENTRYN and want to use your 
own initial IBP value, change the load-immediate instructions at 
IBPSET: and IBPS2:. If you enter at NXTPT, simply set the value at 
IBP: to the desired value. Be sure to note that the IBP value changes 
after you call the program (because it is the active buffer pointer, 
not an initializing value). On subsequent entries into the A23D2 
program make sure to reinitialize it. 

17 



6.3 Eliminatable Code Segments 

If you are tight on memory, the test database (starting at TDAT) may 
be eliminated. Various other program segements also may be eliminated. 
See section 5.4 for details. 

6.4 Built-in Test Program 

The complex interaction of 
testing. A test database that 
is being updated continuously. 
memory map). 

A2-3D2 functions required extensive 
exercises all functions was created and 
The test database starts at TDAT (see 

A small test loop that calls the interpreter, updates 
independent object call ~arameters, and tests callable 
resides at memory location TSTLUP'. You can test A2-3D2's 
by loading this program and running it. 

eye and 
functions 
operation 

The built-in test program, database, and the A2-3D2 driver itself come 
as 3 files on the disk or cassette. The driver will first have to be 
generated using your old A2-3D1 package. Instructions for putting 
these three pieces together accompany the cassette or disk. Once you 
have put the three files together, execute the built-in test by 
jumping to the start address at TSTLUP (see memory map). It is a 
continuous loop and will never return. 

6.5 Increasing Projection Rate 

The following actions will increase the projection rate: 
1. Use the non-restoring entry point to call A2-3D2. 
2. Use continue and ray points instead of start-cont, 
3. Use the fastest lines: 

Fastest - White (140x192) 
Slower - Color (140x192) 
Slowest - Hi-Res (280x192) 

4. Use non-clipped projection where appropriate. 

7 INTERPRETIVE COMMAND SHEETS 

start-cont, ••. 

The following set of command sheets describe the whole A2-3D2 command 
set. Although the A2-3D1 commands and databases developed around them 
will be interpreted properly, new extensions to the old commands 
exist. It is easier to use a complete set of command sheets than an 
old set and many addendum sheets, so all commands are presented. 

18 

"-

'------" 

'-.../ 



-------

\.____./ 

"-----" 

."--._./ 

PURE POINT (140x192 COLOR) COMMAND = 00 hex PNT 
= 00 dec 

OPERATION: This command specifies a point in space using X,Y,Z coordinates. 
The program converts this into a 2D point to be projected on the 
screen or sent to the output array. The point is not projected 
or sent if it falls off the screen. The point color 

BYTES: 

FORMAT: 

EXAMPLE: 

USES: 

RULES: 

is determined by the Set Color Mode command (default is white). 
The point will be plotted as a non-colored single pixel 
if the display mode has been set to Hi-Res (280x192). 

7 

00, X lsb, X msb, Y lsb, Y msb, Z lsb, Z msb in sequential 
memory locations. X,Y, and Z are double precision, 2's 
complement, byte swapped values. 

Input: 
Address Data Meaning 

1b39 00 PNT opcode 
1b3a,3b 34,12 X coord. (1234 hex) 
1b3c ,3d 79,19 Y coord. (1979 hex) 
1b3e,3f 00,01 Z coord. (0100 hex) 

Resulting Output: The 3-D point X,Y,Z would be projected 
onto the 2D screen or put into the output array at the 
current output array address. The output array pointer is 
advanced to the start of the next output element. 

Points are useful where single small dots are require 
(stars for example). 

Any number of points may be used in any location in the input array. 

ARRAY GEN: The 2D projection of this PNT is put in the output array 
if array generation is turned on. 

19 



START POINT (140x192 COLOR) COMMAND = 01 hex SPNT 
= 01 dec 

OPERATION: 

BYTES: 

FORMAT: 

EXAMPLE: 

USES: 

RULES: 

"· 

ARRAY GEN: 

SPNT specifies the beginning of a line in space using X,Y,Z 
coords. The program converts the start point and the following 
continu·e point and projects a 2D line on the screen. The line 
is eliminated if off the screen and clipped if partially on the 
screen (if the clipper is turned on). If the clipper is off and 
the line is partially off the screen, the line is eliminated. 
A line entry is made in the output array if array generation is 
The line's color is controlled by the Set Color Mode command. 
A non-color line of 280x192 resolution will be drawn if hi-res 
mode was previously selected. 

7 

on. 

01, x lsb, x msb, y lsb, y msb, z lsb, z msb in sequential order, 
with x,y,z double precision byte-swapped. 

Input: 
Address 

1co8 
1c09,0A 
1c0b ,Oc 
1c0d,Oe 
1c0f 

Data 

01 
00,01 
77,00 
21,43 
xx,xx 

Meaning 

SPNT opcode 
X coord. 0100 hex 
Y coord. 0077 hex 
Z coord. 4321 hex 
Continue point code and coords. 

Result: The line defined in 3D space by the start point and the 
following continue point is projected as a 2D line on the screen 
or is entered in the output array, and the output array pointer 
is advanced to the beginning of the next array entry. 

The line is the most-used element in 3D projections. Every line 
starts with a start point (directly or indirectly). Wherever 
lines are needed, the start point is useful. 

A continue point MUST follow a start point. No other command 
or type of point will suffice. If a continue point doesn't 
follow, the following command will be assumed to be a 
continue point causing a bad line at best, and an out-of
command synchronization problem and subsequent error exit 
at worst. 

Note: A STCOL command can be used in the middle of a line 
string (between continue and ray points) to change colors 
in the middle of the string. 

The 2D proJection of the line specified by the start point 
and follow1ng continue point is placed in the output array 
if array generation is turned on. 

20 

'-...__/ 



\.____.. 

'---....--' 

'-----" 

SET LINE DRAWING MODE COMMAND = Oc hex LMODE 
= 12 dec 

OPERATION: LMODE selects between normal ('or') line drawing and exclusive 'or' 
line drawing, and turns off output array generation. 

BYTES: 

DEFAULT: 

FORMAT: 

EXAMPLE: 

USES: 

RULES: 

ARRAY GEN: 

2 

Upon program loading, normal line mode is in effect. Once changed 
to the exclusive or line mode, the program remains in the mode 
until specified otherwise -- even from call-to-call. 

Oc, n in sequence causes either normal or exclusive-or line 
drawing modes to be entered. 

n=OO : normal mode 

Input: 

n=01 : exclusive ' or' mode 

Address Data 

1b80,81 Oc,01 
1b82 xxxx 
1c56,57 Oc,OO 
1c58 xxxx 

Meaning 

draw the following in exclusive 'or' mode 
lines to be drawn in exclusive 'or' mode 
switch back to regular line mode 
lines to be drawn in normal mode 

Exclusive 'or' lines can be used to draw black on white, white 
on black, or they can selectively erase lines by drawing the 
same line twice. 

This command can be used anywhere in an input array. Rememb er 
that the program will remain in the line drawing mode it was 
last in until changed - even from call-to-call. 

CAUTION: Never use the LMODE command when any color other 
than white is in effect. Other colors are generated using 
an 'AND-OR' mask rathar than a simple 'OR' mask. Selective 
erasures are thus not possible. IN THE CURRENT PROGRAM, 
A CRASH CAN RESULT IF YOU USE LMODE WHEN A NON-WHITE 
COLOR IS IN EFFECT • 

This command turns array generation off and puts an end-of-file 
79(hex) at the end of the array. 

31 



TURN ON OUTPUT ARRAY COMMAND = Od hex ARRAY 
= 13 dec 

OPERATION: ARRAY causes an output array to be generated instead of a screen 
projection. The array address is also specified. 

BYTES: 

DEFAULT: 

FORMAT: 

EXA.MPLE: 

3 

Upon input array entry, and every time the program is called, 
the output array generator is turned off. 

Od, a lsb, a msb in sequence causes an output array to be 
generated starting at address 'a'. The value 'a' is byte-swapped. 
Array ~eneration ends when an end of array command or Oc 
(set l1ne drawing mode) command is encountered. The end of 
file is denoted by an end of array mark (a 79 hex). 
The output array is identical in construction to the input 
array and consists of Oa (points) and 06 (2D lines). The 
output array may be interpreted as an input array by the 
program. 

Input: 
Address Data 

lcdO 
ld78 
ld79,7a 
ld7b 

xxxx 
Od 
OO,lf 
xxxx 

.Meaning 

lines being projected on screen 
ARRAY opcode 
create array at lfOO hex 
lines to be placed in output array 

Result: The lines starting at ld7b are put into the output 
array (after 3D-to-2D conversion). 

USES: The array feature is useful on non-APPLE machines where 
seperate line drawing routines are being used. The output array 
can be used to sve images for later display, and to hold-off 
projection of 2D lines until all the 3D transformations 
have been sone, resulting in smoother displays. 

RULES: Care should be taken in setting the output array's address. 
It should not overlap a program or screen display area. 
APPLE II screen control commands should not be used while 
creating an output array. They create no array entries but 
still affect the APPLE II screen functions and memory. 

ARRAY GEN: Array generation is turned on and the address of array 
generation is specified. 

32 

'-..._/ 

\.__./ 



'-..._../ 

'--

'-..._../ 

SCREEN SIZE SELECT COMMAND = Oe hex SCRSZ 
= 14 dec 

OPERATION: 

BYTES: 

DEFAULT: 

FORMAT: 

EXAMPLE: 

SCRSZ ~rivides the program with screen bit ratio and screen 
center1ng information. Arguments in the command specify screen 
bit height and width and x,y centers. 

5 

Screen size on program load-up is preset to 140-wide, 192-high 
(decimal). Screen center is at 0,0. 

Oe, scr. width, scr. height, scr. x center, scr. y center in 
sequential order sets the bit ratio and center. Height and 
width can reach a maximum of 256 x 256, and screen center can 
be anywhere within+/- 127. 

Input: 
Address Data 

lf19 
1f1a,1b 
1flc,1d 

Oe 
20,30 
f0,10 

Meaning 

SCRSZ opcode 
bit ratio is 20 hex wide, 30 hex high 
screen center is x=fO hex y=10 hex 

Result: The images are projected onto the following screen area: 

20 wide 

. 
center 

center=f0,10 
x,y 

full screen 
= co high 

30 
high 

USES: 

RULES: 

ARRAY GEN: 

full screen - 8c wide 

SCRSZ is useful for setting screen size on non-APPLE devices, 
and for creating multiple and custom windows on APPLE displays. 

Don't center the screen in such a way as to cause the image to 
fall outside of the display device's plotting boundary. 

No entry is made in the output array. 

33 



'------" 

'------" 

'-....../ 

EASY INITIALIZE COMMAND = 10 hex INIT 
= 16 dec 

OPERATION: This command puts the APPLE II screen into the high-res, split 
graphics/text, page 1 viewing mode. 

BYTES: 

FORMAT: 

EXAMPLE: 

USES: 

RULES: 

ARRAY GEN: 

1 

10(hex) in an input array initializes the screen. 

Input: 
Address Data Meaning 

1b00 10 initialize the screen 

Result: The screen goes into hi-res, split, page 1 viewing mode 

INIT is a good way to start most page 1 input arrays. It 
puts the screeen in an easy to use mode because 4-lines of 
text are provided on the bottom of the screen. This command 
avoids having to use 3 seperate 07 (display select) commands. 

It is good to use this at the beginning of input arrays. 
There are no location restrictions however. 

No entry is made in the output array. 

35 



NO OPERATION COMMAND = 11 hex NOP 
= 17 dec 

OPERATION: NOP performs no operation and is skipped-over by the program. 

BYTES: 

FORMAT: 

EXAMPLE: 

1 

An 11 (hex) in the input array is ignored and skipped over. 

Input: 
Address Data 

1e05 
1e06 
1e07 

11 
11 
xxxx 

Meaning 

NOP code 
NOP code 
valid commands 

Result: The two NOPs are skipped and the valid commands at 1e07 
are processed. 

USES: The NOP is good for filling space that might be used later 
(especially at the be~inning of an input array where initializes, 
erases, and location 1nformation may be added). It is also 
good for elimination unwanted commands without compressing 
the entire array to fill-in the gap left by the command's removal. 
If you are using many sequential NOPs, the 'SKIP' command 
might be more appropriate. See command la (hex). · 

RULES: NOPs may be used anywhere. 

ARRAY GEN: No entry is made in the output array. 

36 

'-.__./ 

'-----

-...___/ 



'-----" 

SET COLOR MODE COMMAND = 12 hex STCOL 
= 18 dec 

OPERATION: STCOL sets the color mode that will be in effect for the following 
lines. Five colors are available. If array generation is turned on 
the color command is copied into the output array. 

BYTES: 

FORMAT: 

EXAMPLE: 

2 

12(hex),n in sequence specifies the color mode. The value 'n' 
corresponds to: 

n I color 

00 
01 
02 
03 
04 

Input: 

white 
green 
purple 
blue 
orange 

address data 

1352 
1353 
1354 

12 
02 
xxxx 

meaning 

STCOL opcode 
set color to purple 
lines and points to be plotted as purple 

Result: Lines and points starting at 1354 are plotted as 
~urple. If the array generator is on, the STCOL command 
1s copied into the output array. 

USES: This command is used wherever color points and lines are needed. 

RULES: This command is instruction-modifying and stays in effect from 
call-to-call. Changing colors takes a lot of overhead time. 
It is wise to grou~ all lines of the same color together to 
avoid excessive sw1tching. 

CAUTION: Never use the LMODE command when any color other 
~ than white is in effect. Other colors are generated using 

an 'AND-OR' mask rathar than a simple 'OR' mask. Selective 
erasures are thus not possible. IN THE CURRENT PROGRAM, 
A CRASH CAN RESULT IF YOU USE LMODE WHEN A NON-WHITE 
COLOR IS IN EFFECT. 

'------" 

RATE: 1500 color changes/ second. 

SPEED: 650 usee. 

ARRAY GEN: The STCOL command is copied directly into the output array 
if array generation is turned on. 

37 



INDEPENDENT OBJECT CALL COMMAND = 13 hex !CALL 
= 19 dec 

• 
OPERATION: !CALL projects an object that was defined earlier in its own 

reference frame. The object is projected onto the screen 
or into an output array (if selected). !CALL also passes object 
positional and rotational information. 

BYTES: 13 

FORMAT: 

• byte 13 hex 
• byte 0 
.byte 0,0 
.byte 0,0 
.byte 0,0 
• byte 0 
.byte 0 
• byte 0 
.byte 0,0 

-independent object call opcode 
-status flag OO=inactive ff=active 
-x offset (double precision lsb,msb) 

nn=countdown 

-y offset 
-z offset 
-pitch (single precision) 
-bank (single precision) 
-heading (single precision) 
-definition address 

Status flag - If set to 0, the object is not projected. If set to ff hex 
the object is projected. If not 00 or ff, then the value 
is a countdown value that is decremented every frame (from 
fe down to 00 for instance). The object is projected until 
00 count is reached. 

Offset X,Y,Z- This is used to move the object about in space. This 
is the displacement of the object's rotation-center 
from the absolute 0,0,0 center of space. 

Pitch,Bank,Heading -These are single precision pseudodegrees. 
They define the rotation of the object about its own 
center. 
See section 4.4 for rotation and translation sense 
of direction. 

Definition Address- This double precision byte-swapped address value 
points to the object definition. 

EXAMPLE: Input: 
address 

1000 
1001 

data 

13 
ff 

1002,1003 32 12 
1004,1005 00 fe 
1006,1007 81 19 
1008 34 
1009 c7 
100a 01 
100b,100c 00 20 

Result: 

meaning 

!CALL opcode 
status = object turned on 
object's X center in space (1234 hex) 
object's Y center in space (feOO hex) 
object's Z center in space (1981 hex) 
object's pitch about its own center (34 hex) 
object's bank about its center 
object's heading about its center 
address of object definition (2000 hex) 

The object is 'moved' to position X=1234, Y=feOO, Z=1981 
and is rotated about its Y axis by heading, its transverse 
axis by pitch, and finally about its lateral axis by bank. 
The 'moved' object is then projected as viewed by the 
viewer's eye. 

ARRAY GEN: No entry is made in the output array. 

38 

'--._.../ 

"-...--/ 

"-.__./ 



"-----"' 

..__/ 

'-...__/ 

SET RESOLUTION COMMAND 14 hex SRES 
20 dec 

OPERATION: SRES sets the line drawer mode to either hi-res 
(280 x 192) or low res (140x192 color) mode. 

BYTES: 

FORMAT: 

EXAMPLE: 

USES: 

DEFAULT: 

RULES: 

ARRAY GEN: 

3D lines as well as LIN2D and PNT2D lines are 
affected. If output array generation is enabled, this command 
is transferred directly to the output array to 
control display resolution at draw-time. 

2 

14(hex),m where m=O for low res 
where m=1 for hi-res 

Input: 
address data meaning 

1000 14 SRES opcode 
1001 01 hi-res mode 
1002 xxxx lines to be drawn in hi-res mode 

Result: Lines starting at address 1002 are plotted in 
hi-res mode. If the output array is turned on, the SRES 
command is transfered to it. 

Hi-res lines are used where very accurate but non-colored 
drawings are needed. 

Low-res. 

SRES sets line jum~out traps by dynamically modifying the 
program. The mode 1s not initialized by entry into A2-3D2 
and will stay the same from call-to call unless explicitly 
changed. 

The SRES command is copied directly into the output array 
if array generation is turned on • 

39 



HI RES (280 x 192) LINE 2D COMMAND = 15 hex HLIN 
= 21 dec 

OPERATION: 

BYTES: 

FORMAT: 

EXAMPLE: 

HLIN feeds line drawing information directly to the display 
screen. It takes a start and end point (both with double 
~recision X values to accomodate 280 resolution) specified 
1n the command and draws it on the screen. The line 
has no specific color characteristics. 

7 

15 hex, Xlo, Xhi, Y, X'lo, X'hi, Y' in sequential memory 
locations plots the line X,Y to X'Y' on the screen. 
X values may range from -140 to 139 (decimal) and Y may 
range from -96 to 95. Screen center is 0,0- positive x 
is right, positive y is up. 

Input: 
Address Data 

lbOO 15 
lb01,2,3 07,01,22 
lb04,5,6 29,ff,e4 

Meaning 

HLIN opcode 
line start point 
line end point 

x=0107, y=22 hex 
x=ff29, y=e4 hex 

Result: The line from 0107,22 to ff29,e4 is drawn. 

USES: HLIN is used for drawing additional 2D lines where 
accuracy as well as a full 280 x range is required. 

RULES: Set Resolution and Set Color commands have no effect on 
HLIN lines. They are always hi-res. 

ARRAY GEN: No entry is made in the output array. 

40 

'-.....-

'--

'-._/ 



~ 

'------" 

.____, 

SET HI-RES BIAS COMMAND = 16 hex SHRB 
= 22 dec 

OPERATION: SHRB sets the center point of a 256 x 192 drawing field 

BYTES: 

FORMAT: 

EXAMPLE: 

on the 280 x 192 screen. This bias is used with HLIN2 
lines and HPNT2 points. 

4 

16 hex, Xlo, Xhi, Y, where Xhi,Xlo = 16-bit center X 
where Y = center Y 

Input: 
Address 
9000 
9001,02 
9003 

Data 
16 
F4,FF 
00 

Meaning 
SHRB opcode 
Shift 256 wide X field FFF4 units 
Y bias = screen center 

Result: The 256x192 drawing field will be shifted -12 
(FFF4) units. This corresponds to a left shift of the field 
by 12 units. The -128 to 127 range drawing field will map 
to screen locations -140 to 115. The screen values of 
116 to 139 are inaccessable by HLIN2 and HPNT2. 

USES: Used to set screen bias prior to HLIN2 and HPNT2 command. 

DEFAULT: The Hi-Res bias is 0,0 on program load. These values are 
not reinitialized upon program entrr, so they stay the 
same from frame to frame unless exp icitly changed. 

ARRAY GEN: No entry is made in the output array. 

41 



HI-RES (X=256 limited) LINE 2D COMMAND = 17 hex HLIN2 
= 23 dec 

OPERATION: HLIN2 draws lines in hi-res (256 x 192) mode. There are 

BYTES: 

FORMAT: 

EXAMPLE: 

24 unused X points out of the available 280 on the APPLE II 
screen. The Set Hi-Res Bias command determines where 
in the 280 X field the 256 X values will be mapped. 

5 

17 hex, x, y, x', y' in sequential memory locations plots the 
line x,y to x',y' on the screen. X values may range from 
~128 to 127 andY values may range from -96 to 95. 

Input: 
Address Data Meaning 

1b0f 17 HLIN2 opcode 
1b10,11 73,20 line start point x=73 hex, y=20 hex 
1b12,13 84,f3 line end point x=84 hex, y=f3 hex 

Result: The line 73,20 to 84,f3 is drawn in hi-res mode. 
Actual screen position of the line depends on the bias values 
set by the 'Set Hi-Res Bias' command. 

USES: Used where hi-res lines are desired, but memory storage 
and computation must be limited to 8-bit x values. 

ARRAY GEN: No entry is made in the output array. 

42 

\._) 

'-....--

\........_./ 



~ 

'-..../ 

~ 

HI-RES (280 x 192) POINT PLOT 2D COMMAND = 18 hex HPNT 

dPERATION: 

BYTES: 

FORMAT: 

EXAMPLE: 

= 24 dec 

HPNT plots a ~oint in hi-res (280 x 192) coordinates. 
A double prec1sion X is needed to fully specify the 
280 horizontal resolution. 

4 

18 hex, Xlo, Xhi, Y, in sequential memory locations plots 
the point X,Y on the 280 x 192 resolution screen. 

Input: 
Address 

1000 
1001 
1003 

Data 

18 
07,01 
22 

Meaning 

HPNT opcode 
X value = 107 hex 
Y value = 22 hex 

Result: The point 107,22 is plotted on the hi-res screen. 

USES: Used where hi-res points and full 280 X range points are 
required. 

ARRAY GEN: No entry is made in the output array. 

43 



HI-RES (X=256 limited) POINT PLOT 2D COM~~D = 19 hex HPNT2 
= 25 dec 

OPERATION: HPNT2 plots a point in hi-res (256 x 192) coordinates. 
The screen bias values set by the Set Hi-Res Bias command 
determine how the point is mapped onto the 280 x 192 
screen. 

BYTES: 

FORMAT: 

EXAMPLE: 

3 

19 hex, X, Y, in sequential memory locations plot the point 
X,Y on the screen. Actual screen location depends on 
the Hi-Res Bias in effect at the time of command execution. 

Input: 
Address 
1000 
1001 

Data 
19 
7 4,e7 

Meaning 
HPNT2 command 
X=74 Y=e7 hex 

Result: The point 74,e7 is plotted on the hi-res screen. 
Actual position is biased by the values set in the SHRB 
command. 

USES: Used where hi-res points are needed but where computation 
and memory must be limited to 8-bit precision. 

ARRAY GEN: No entry is made in the output array. 

44 

'-..__./ 

'-..__./ 

\....__...--



'-..___...-

'-..___...-

"--....--

SKIP SEGMENT COMMAND = 1a hex SKIP 

OPERATION: 

BYTES: 

FORMAT: 

EXAMPLE: 

USES: 

= 26 dec 

SKIP conditionally branches display file interpretation 
around a given display segment (specified by a byte count). 
A status byte within the SKIP command allows the command 
to be turned on or off to enable or disable branching. 

3 

1a(hex), size, status in sequential memory locations cause 
the next 'size' bytes to be skipped if status=OO hex. 
If status=ff hex, the SKIP is inactive and interpretation 
resumes immediately following the SKIP instruction. 
Note that when 'size'=O no skipping takes place 
(display file interpretation resumes after the SKIP command). 

Note: Size is a nonsigned positive integer. 
Range= 0 to 252. Don't use 253, 254 or 255. 

Input: 
Address Data Meaning 
1000 1a SKIP opcode 
1001,1002 3,0 size=3 bytes, skip=O=active 
1003 XX skipped-over 
1004 XX skipped-over 
1005 XX skipped-over 
1006 xxxx interpretation resumes here. 

Result: The bytes at 1003,1004 and 1005 are skipped over. 

This command is used when commands are to be replaced 
(replacement by ski~ping-over versus NOP-fillins), and 
when commands and d1splay segments are to be sw1tched 
on and off (by toggling the status between 0 and ff). 

NOTE: The 'sense' of the status byte may seem backwards 
(O=skip, ff=no skip), but this 'sense' was chosen 
for a reason. Think of the skip command as a 
'turn object on or off' command (O=object off, 
ff=object on). 

ARRAY GEN: No entry is made in the output array. 

45 



PAUSE 

OPERATION: 

BYTES: 

FORMAT: 

EXAMPLE: 

COMMAND = 1b hex 
= 27 dec 

A ~ause of 'n-fifths' of a second occurs when the 
PAUS command is encountered in a display file. 

2 

1b(hex), time in sequential memory locations cause a 
pause of time/5 seconds. 

Input: 
Address 
1000 
1001 

Data 
1b 
OS 

PAUS opcode 
time = 5 units 

Result: Display interpretation pauses for 5/Sths 
or one second. 

USES: Used where a series of display frames with time gaps 
between them are desired. 

RULES: The time value 0 results in no pause. This can be used 
as a convenient switch to turn the pause off. 

ARRAY GEN: No entry is made in the output array. 

46 

PAUS 

\_) 

'------' 

"--..-/ 



'-..__...-

'-.__../ 

'-.__../ 

SET 3D-to-3D CONVERSION ARRAY ADDRESS COMMAND = 1c hex SET323 
= 28 dec 

OPERATION: The 3D-to-3D conversion output array pointer is set to the 
specified location in memory. Array generation begins at 
this point. 

BYTES: 

FORMAT: 

EXAMPLE: 

RULES: 

DEFAULT: 

ARRAY GEN: 

3 

1c(hex), address lsb, address msb in sequential memory locations 
sets the output array pointer to the specified address. 

Input: 
Address 
1300 
1301,02 

Data 
1c 
23,14 

Meaning 
SET323 opcode 
address = 1423 hex 

Results: Array generation is set to start at 1423 hex 

The address is byte swapped (lsb,msb). 

Array generation's default address is 'TDAT' (see memory 
map) if not specified by this command. 

No entry is made in the regular output array. Note that 
the 3D-to-3D conversion arral is a seperate array and is 
not associated with the regu ar output array. 

47 



SET 3D-to-3D CONVERSION ARRAY STATUS COMMAND = 1d hex GN323 
= 29 dec 

OPERATION: The GN323 command turns 3D to 3D conversion array generation 
on and off. It can also turn projection on or off. 

BYTES: 2 

FORMAT: 1d(hex). status in sequential memory locations affects the 
3D to 3D conversion array generation system as follows: 

EXAMPLE: 

status 
00 
01 
02 

Input: 

Address 

1500 
1501 

result 
Turn array generation off 
Turn array generation on 
Turn array generation on and suppress 
final projection. 

Data 

1d 
02 

Meaning 

GN323 opcode 
status = supress screen projection. 

Results: From 1503 on, all 3D to 3D conversions are 
submitted to an output array. Screen projection is 
suppressed. 

RULES: The array is built at the address specified by the 
SET323 command. 
The array pointer is continually updated as the array 
is built. The array pointer is at arrset+1 (lsb) and 
arrset+2 (msb). See the memory map for the addresses. 

DEFAULT: 3D to 3D conversion array generation is initially off. 
The default array generation address is 'TDAT' (see 
memory map) until respecified by SET323. 

ARRAY GEN: No entry is made in the regular output array. Note that 
the 3D-to-3D conversion array is a seperate array and is 
not associated with the regular output array. 

48 



'--.__/ 

'--.__/ 

'-.___../ 

END OF FILE 

OPERATION: 

BYTES: 

FORMAT: 

COMMAND = 79 hex EOF 
= 121 dec 

EOF defines the end of a display file. Non-command codes 
also cause end of file action, but today's non-command 
codes may be tomorrow's new command codes. The 
value 79 hex will always remain the official EOF marker. 

1 

79 hex at the end of a file indicates an end of file. 
Program data, another display file, or anything_else 
may follow the EOF and will be ignored by the A2-3D2 
software. 

NOTE: It is possible to 'SKIP' or 'JUMP' over an 
EOF, so be careful when you use these instructions. 

ARRAY GEN: An EOF is appended to the output array. 

49 



8 DIRECT CALL FUNCTION SHEETS 

The following 'DIRECT CALL' functions can be used when display file 
interpretation is not desired. 

CAUTION: MAKE SURE TO CALL THE INTERPRETER ONCE IN INTERPRETIVE MODE 
BEFORE USING THESE COMMANDS. DISPLAY VARIABLES ARE INITIALIZED BY 
THIS ACTION. 

TRIG FUNCTION CALL JSR XSIN 
JSR XCOS 

OPERATION: 

INPUT: 

CALL: 

OUTPUT: 

An angle in 0-255 range pseudodegrees poked into 
the TDATA byte in memory (see memory map) generates 
a sine or cosine funcion at location TDATA (lsb) 
and TDATA+l (msb). 

TDATA = angle in pseudodegrees 

JSR XSIN or JSR XCOS depending on desired result. 

TDATA,TDATA+l = 16-bit fractional 2's comp., 
byte-swapped result. 

50 

.'---./ 

~ 

'-...__../ 



\____,/ 

\______-i 

'-----' 

DOUBLE PRECISION MULTIPLY CALL JSR MULT 

OPERATION: The fractional product of MPYER * MCAND yield a 
fractional result in RESULT. The result is an 
approximation that is accurate to about 2 or 3 
units error. The MPYER, MCAND and RESULT are all 
16-bit fractional. 

INPUT: 

CALL: 

OUTPUT: 

MPYER 
MPYER+l 
MCAND 
MCAND+l 

JSR MULT 

=multiplier lsb 
= multiplier msb 

multiplicand lsb 
=multiplicand msb 

%A = lsb result 
%X = msb result 

51 



SINGLE PRECISION MULTIPLY CALL 

OPERATION: The fractional product of %A * %X yields 
a fractional result in %A. The results 

INPUT: 

CALL: 

OUlPUT: 

are exact. NOTE: No negative %X is allowed 

%A = 8-bit multiplier 
%X = 8-bit multiplicand 

JSR FSTMUL 

%A = 8-bit fractional product 

JSR FSTMUL 

LIMITS: No negative multiplicands (%X) are allowed. 

52 

'-._____./ 

"-._./ 

'-.___/ 



'-..___/ 

~ 

~ 

DOUBLE PRECISION DIVIDE CALL ~· JSR DIVIDE 

OPERATION: 

INPUT: 

CALL: 

OUTPUT: 

LIMITS: 

"' .... The 16-bit fractional quotient of %A,%X/MCAND 
is stored in the MPYER word. 

%X = top of fraction (lsb) 
%A = bottom of fraction (msb) 
MCAND = bottom of fraction (lsb) 
MCAND+l= bottom of fraction (msb) 

JSR DIVIDE 

MPYER = quotient (lsb) 
MPYER+l = quotient (msb) 

The fraction top must be less than the fraction bottom 
or overflow will result. 

53 
• 



SCREEN ERASE JSR ERA 

OPERATION: The high or low screen is erased (or filled with 
white). 

INPUT: 

CALL: 

OUTPUT: 

%A = 00 for black erase 
= FF for white fill 

JSR ERASE2 
JSR ERASE4 

for low screen (2000-3fff) erase 
for high screen (4000-Sfff) erase 

Screen erased or filled. %X destroyed. 

54 

\._./ 

"----' 

\....__/ 



"--.__./ 

'------'· 

~ 

HI-RES POINT PLOT JSR DPOINT 

OPERATION: A hi-res point is plotted on the hi-res screen. 

INPUT: 

CALL: 

LIMITS: 

%X= 8 most significant bits of X (280 range) 
STRTXL= bit 7 =lsb of X bits 6-0 = 0 
%Y= y 

JSR DPOINT 

X range from -140 to 139 decimal. 
Y range from -96 to 95 decimal. 
The screen (page 1 or 2) is the last screen selected 
by an interpretive call. 

55 



COLOR POINT PLOT JSR LPOINT 

OPERATION: A color point is plotted on the hi-res screen. 

INPUT: 

CAlL: 

LIMITS: 

%X= X 
%Y= y 

JSR LPOINT 

X range from -70 to +69 
Y range from -96 to +95 
Screen pa$e and color are those last selected by 
interpret1ve call. 

56 

'------' 

'----"" 

.'-.__./ 



"-...../ 

"-...../ 

'-..___/ 

HI-RES LINE DRAW JSR DLINE 

OPERATION: 

INPUT: 

CALL: 

OUTPUT: 

LIMITS: 

Draws a hi-res (280 x 192) line on screen. 

startx = 8 msb of start x 
strtxl = bit 7 = lsb of start x bits 6-0 = 0 
starty = start y 
endx = 8 msb of start x 
endxl = bit 7 = lsb of end x bits 6-0 = 0 
endy = end y 

JSR DLINE 

Line is drawn on screen last selected by interpretive 
call. 

X range = -140 to 139 
Y range = -96 to 95 

57 



COLOR LINE DRAW 

OPERATION: Draws a color line (140 x 192) on screen. 

INPUT: 

CALL: 

OU1PUT: 

LIMITS: 

startx = start x 
starty = start y 
endx = end point x 
endy = end point y 

JSR LLINE 

Line is drawn on screen. 

X range = -70 to 69 
Y range = -96 to 95 

58 

JSR LLINE 

~ 

"--../ 



\,_____/ 

~ 

~ 

SET DISPLAY RESOLUTION JSR SRHI 
JSR SRLO 

OPERATION: Sets line drawer resolution to HI (280 x 192) 
or LO (140 x 192 color). 

INPUT: None 

CALL: JSR SRHI to set HI resolution 
JSR SRLO to set LO resolution 

OUTPUT: None 

59 



TDL Z80 CP/M DISK ASSEMBLER VERSION 2.21 
.MAIN. - A2-3D2 
A2-3D2 Memory Map 

6000 
6003 
606C 
60'-10 
61HJ 

6006 
61F6 
6009 
620F 
6480 
6~)?[1 
65DE 
762<1 
76A8 
"7'714 
771F 
7E42 
7748 
8051 
805F 

OOK5 
OOA4 
OOB4 
OOB5 
OOA3 
OOB6 
007C 
OO?D 
007E 
0080 
0082 
0084 
008tl 
0088 
008A 
008C 
008E 
0090 
0092 
0094 
0099 
009B 
613E 
00?8 
007A 
6091\ 
609E 
OOBB 
OOBC 
OOBit 
71.F5 
?:tF6 

@; *********** subLOGIC A2-3D2 MEMORY MAP 
@ 

***********lj\-..../ 
@; INTERPRETER CALL ADDRESSES 
@ 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@ 

xentl 
xent2 
entrys 
entryn 
nxtpt 

; normal restoring entry 
; fast nonrestoring entry 
; same function as xentl 
; same function as xent2 
; display loop entry 

@; CALLABLE FUNCTION CALL ADDRESSES 
@ 
@adrs = xs1n 
@adrs = sinex 
@adrs -
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@ 

xcos 
cosex 
mult 
fstmul 
divide 
erase2 
erase4 
dpoint 
lpoint 
dline 
lline 
srhi 
srlo 

. . , s1ne 
; same function 
; cosine 
; same function 
; D.P. multiply 
f s.~. m~l~iply 
, D.~. d1v1de 
; low page erase 
; hi-page erase 
; hi-res point 
; color point 
; hi-res line 
• color line 
~ set resolution 
; set resolution 

as sine 

(). !!; ~·~C 0~:> 

to hi 
to lo 

@; IMPORTANT VARIABLES 
@ 

startx 
strtxl 
starty 
endx 
endxl 
endy 
clip on 
~enar 
ml 
ru2 
m3 
m4 
ru5 
"'6 
m7 
ru8 
ru9 

zv 
addrs 
ibp 
tdata 
mpyer 
me and 

• ~) .... d 
~~ ~~.:. .. 

• ') -· d , A •• 

s;t.•lrt po:i.nt 

end point 

;clipper switch O=clip l=no clip 
;~enerate array switch O=screen l=array 
;9-element rotation matrix m1-m9 

• , 
• t , 

lm1 m2 m3: 
lm4 m5 m6l 
lm7 m8 m9l 

;view<·:~r :-:,y,z 

;line gen. variable 
;input buffer pointer 
;trig data 
;multiply/divide data 

@adrs -
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = xv 
@adrs = yv 
@adrs -
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 
@adrs = 

ibpset ;input buffer immediate load inst. 1 
ibps2 ;input buffer immediate load inst. 2 
scbias ;screen address bios (byte) 
scrlow ;screen address low (byte) 
scrhi ;screen address high (byte) 
arr323+1 ;3D-to-3D array pointer Clsb) 
arr323+2 ;3D-to-3D array pointer <msb) 

'--..../ 

\..._/ 



1-
z w 
::2: 
w 
u 
z 
ex: 
:J: 
z w 
N 
c 
M 

--

( 



1-
2 
w 
~ 
w 
t.) 

2 
c:( 
:I: 
2 
w 
N 
c 
M 


